Search results for "HOLE PLASMAS"

showing 1 items of 1 documents

Nonequilibrium Green's function approach to strongly correlated few-electron quantum dots

2009

The effect of electron-electron scattering on the equilibrium properties of few-electron quantum dots is investigated by means of nonequilibrium Green's function theory. The ground and equilibrium states are self-consistently computed from the Matsubara (imaginary time) Green's function for the spatially inhomogeneous quantum dot system whose constituent charge carriers are treated as spin-polarized. To include correlations, the Dyson equation is solved, starting from a Hartree-Fock reference state, within a conserving (second-order) self-energy approximation where direct and exchange contributions to the electron-electron interaction are included on the same footing. We present results for…

KADANOFF-BAYM EQUATIONSFOS: Physical sciencesquantum dotsElectronelectron-electron interactionsSEMICONDUCTORSGreen's function methodsATOMSCondensed Matter - Strongly Correlated Electronssymbols.namesakeMOLECULESSYSTEMSQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum statistical mechanicsKINETICSPhysicsstrongly correlated electron systemstotal energyCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicselectron-electron scatteringHOLE PLASMASCondensed Matter Physicsground statesImaginary timecarrier densityElectronic Optical and Magnetic MaterialsDistribution functionINITIAL CORRELATIONSQuantum dotGreen's functionSPECTRAL FUNCTIONSsymbolsStrongly correlated materialCRYSTALLIZATIONFermi gasPhysical Review. B: Condensed Matter and Materials Physics
researchProduct